aboutsummaryrefslogtreecommitdiff
path: root/vendor/zgui/libs/winpthreads/src/libgcc
diff options
context:
space:
mode:
authorNic Gaffney <gaffney_nic@protonmail.com>2025-10-13 01:19:27 -0500
committerNic Gaffney <gaffney_nic@protonmail.com>2025-10-13 01:19:27 -0500
commit1f9b827badb2de4c4eaae11c0d02242ec90af7f6 (patch)
tree27acb295833e6eee730dd71f98db280d54c6a4ad /vendor/zgui/libs/winpthreads/src/libgcc
parentb5d0c1dcd751f4735d9f6b45c805300000c9d171 (diff)
downloadparticle-sim-1f9b827badb2de4c4eaae11c0d02242ec90af7f6.tar.gz
Updating to zig 0.15.1
Diffstat (limited to 'vendor/zgui/libs/winpthreads/src/libgcc')
-rw-r--r--vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c586
1 files changed, 0 insertions, 586 deletions
diff --git a/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c b/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c
deleted file mode 100644
index 77bb1fe..0000000
--- a/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c
+++ /dev/null
@@ -1,586 +0,0 @@
-/*-
- * Copyright (c) 1992, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * This software was developed by the Computer Systems Engineering group
- * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
- * contributed to Berkeley.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-#ifndef _LIBKERN_QUAD_H_
-#define _LIBKERN_QUAD_H_
-
-/*
- * Quad arithmetic.
- *
- * This library makes the following assumptions:
- *
- * - The type long long (aka quad_t) exists.
- *
- * - A quad variable is exactly twice as long as `long'.
- *
- * - The machine's arithmetic is two's complement.
- *
- * This library can provide 128-bit arithmetic on a machine with 128-bit
- * quads and 64-bit longs, for instance, or 96-bit arithmetic on machines
- * with 48-bit longs.
- */
-/*
-#include <sys/cdefs.h>
-#include <sys/types.h>
-#include <sys/limits.h>
-#include <sys/syslimits.h>
-*/
-
-#include <limits.h>
-typedef long long quad_t;
-typedef unsigned long long u_quad_t;
-typedef unsigned long u_long;
-#define CHAR_BIT __CHAR_BIT__
-
-/*
- * Define the order of 32-bit words in 64-bit words.
- * For little endian only.
- */
-#define _QUAD_HIGHWORD 1
-#define _QUAD_LOWWORD 0
-
-/*
- * Depending on the desired operation, we view a `long long' (aka quad_t) in
- * one or more of the following formats.
- */
-union uu {
- quad_t q; /* as a (signed) quad */
- quad_t uq; /* as an unsigned quad */
- long sl[2]; /* as two signed longs */
- u_long ul[2]; /* as two unsigned longs */
-};
-
-/*
- * Define high and low longwords.
- */
-#define H _QUAD_HIGHWORD
-#define L _QUAD_LOWWORD
-
-/*
- * Total number of bits in a quad_t and in the pieces that make it up.
- * These are used for shifting, and also below for halfword extraction
- * and assembly.
- */
-#define QUAD_BITS (sizeof(quad_t) * CHAR_BIT)
-#define LONG_BITS (sizeof(long) * CHAR_BIT)
-#define HALF_BITS (sizeof(long) * CHAR_BIT / 2)
-
-/*
- * Extract high and low shortwords from longword, and move low shortword of
- * longword to upper half of long, i.e., produce the upper longword of
- * ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.)
- *
- * These are used in the multiply code, to split a longword into upper
- * and lower halves, and to reassemble a product as a quad_t, shifted left
- * (sizeof(long)*CHAR_BIT/2).
- */
-#define HHALF(x) ((x) >> HALF_BITS)
-#define LHALF(x) ((x) & ((1 << HALF_BITS) - 1))
-#define LHUP(x) ((x) << HALF_BITS)
-
-typedef unsigned int qshift_t;
-
-quad_t __ashldi3(quad_t, qshift_t);
-quad_t __ashrdi3(quad_t, qshift_t);
-int __cmpdi2(quad_t a, quad_t b);
-quad_t __divdi3(quad_t a, quad_t b);
-quad_t __lshrdi3(quad_t, qshift_t);
-quad_t __moddi3(quad_t a, quad_t b);
-u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem);
-u_quad_t __udivdi3(u_quad_t a, u_quad_t b);
-u_quad_t __umoddi3(u_quad_t a, u_quad_t b);
-int __ucmpdi2(u_quad_t a, u_quad_t b);
-quad_t __divmoddi4(quad_t a, quad_t b, quad_t *rem);
-u_quad_t __udivmoddi4(u_quad_t a, u_quad_t b, u_quad_t *rem);
-
-#endif /* !_LIBKERN_QUAD_H_ */
-
-#if defined (_X86_) && !defined (__x86_64__)
-/*
- * Shift a (signed) quad value left (arithmetic shift left).
- * This is the same as logical shift left!
- */
-quad_t
-__ashldi3(a, shift)
- quad_t a;
- qshift_t shift;
-{
- union uu aa;
-
- aa.q = a;
- if (shift >= LONG_BITS) {
- aa.ul[H] = shift >= QUAD_BITS ? 0 :
- aa.ul[L] << (shift - LONG_BITS);
- aa.ul[L] = 0;
- } else if (shift > 0) {
- aa.ul[H] = (aa.ul[H] << shift) |
- (aa.ul[L] >> (LONG_BITS - shift));
- aa.ul[L] <<= shift;
- }
- return (aa.q);
-}
-
-/*
- * Shift a (signed) quad value right (arithmetic shift right).
- */
-quad_t
-__ashrdi3(a, shift)
- quad_t a;
- qshift_t shift;
-{
- union uu aa;
-
- aa.q = a;
- if (shift >= LONG_BITS) {
- long s;
-
- /*
- * Smear bits rightward using the machine's right-shift
- * method, whether that is sign extension or zero fill,
- * to get the `sign word' s. Note that shifting by
- * LONG_BITS is undefined, so we shift (LONG_BITS-1),
- * then 1 more, to get our answer.
- */
- s = (aa.sl[H] >> (LONG_BITS - 1)) >> 1;
- aa.ul[L] = shift >= QUAD_BITS ? s :
- aa.sl[H] >> (shift - LONG_BITS);
- aa.ul[H] = s;
- } else if (shift > 0) {
- aa.ul[L] = (aa.ul[L] >> shift) |
- (aa.ul[H] << (LONG_BITS - shift));
- aa.sl[H] >>= shift;
- }
- return (aa.q);
-}
-
-/*
- * Return 0, 1, or 2 as a <, =, > b respectively.
- * Both a and b are considered signed---which means only the high word is
- * signed.
- */
-int
-__cmpdi2(a, b)
- quad_t a, b;
-{
- union uu aa, bb;
-
- aa.q = a;
- bb.q = b;
- return (aa.sl[H] < bb.sl[H] ? 0 : aa.sl[H] > bb.sl[H] ? 2 :
- aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1);
-}
-
-/*
- * Divide two signed quads.
- * ??? if -1/2 should produce -1 on this machine, this code is wrong
- */
-quad_t
-__divdi3(a, b)
- quad_t a, b;
-{
- u_quad_t ua, ub, uq;
- int neg;
-
- if (a < 0)
- ua = -(u_quad_t)a, neg = 1;
- else
- ua = a, neg = 0;
- if (b < 0)
- ub = -(u_quad_t)b, neg ^= 1;
- else
- ub = b;
- uq = __qdivrem(ua, ub, (u_quad_t *)0);
- return (neg ? -uq : uq);
-}
-
-/*
- * Shift an (unsigned) quad value right (logical shift right).
- */
-quad_t
-__lshrdi3(a, shift)
- quad_t a;
- qshift_t shift;
-{
- union uu aa;
-
- aa.q = a;
- if (shift >= LONG_BITS) {
- aa.ul[L] = shift >= QUAD_BITS ? 0 :
- aa.ul[H] >> (shift - LONG_BITS);
- aa.ul[H] = 0;
- } else if (shift > 0) {
- aa.ul[L] = (aa.ul[L] >> shift) |
- (aa.ul[H] << (LONG_BITS - shift));
- aa.ul[H] >>= shift;
- }
- return (aa.q);
-}
-
-/*
- * Return remainder after dividing two signed quads.
- *
- * XXX
- * If -1/2 should produce -1 on this machine, this code is wrong.
- */
-quad_t
-__moddi3(a, b)
- quad_t a, b;
-{
- u_quad_t ua, ub, ur;
- int neg;
-
- if (a < 0)
- ua = -(u_quad_t)a, neg = 1;
- else
- ua = a, neg = 0;
- if (b < 0)
- ub = -(u_quad_t)b;
- else
- ub = b;
- (void)__qdivrem(ua, ub, &ur);
- return (neg ? -ur : ur);
-}
-
-
-/*
- * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
- * section 4.3.1, pp. 257--259.
- */
-
-#define B (1 << HALF_BITS) /* digit base */
-
-/* Combine two `digits' to make a single two-digit number. */
-#define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
-
-/* select a type for digits in base B: use unsigned short if they fit */
-#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
-typedef unsigned short digit;
-#else
-typedef u_long digit;
-#endif
-
-/*
- * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
- * `fall out' the left (there never will be any such anyway).
- * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
- */
-static void
-__shl(register digit *p, register int len, register int sh)
-{
- register int i;
-
- for (i = 0; i < len; i++)
- p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
- p[i] = LHALF(p[i] << sh);
-}
-
-/*
- * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
- *
- * We do this in base 2-sup-HALF_BITS, so that all intermediate products
- * fit within u_long. As a consequence, the maximum length dividend and
- * divisor are 4 `digits' in this base (they are shorter if they have
- * leading zeros).
- */
-u_quad_t
-__qdivrem(uq, vq, arq)
- u_quad_t uq, vq, *arq;
-{
- union uu tmp;
- digit *u, *v, *q;
- register digit v1, v2;
- u_long qhat, rhat, t;
- int m, n, d, j, i;
- digit uspace[5], vspace[5], qspace[5];
-
- /*
- * Take care of special cases: divide by zero, and u < v.
- */
- if (vq == 0) {
- /* divide by zero. */
- static volatile const unsigned int zero = 0;
-
- tmp.ul[H] = tmp.ul[L] = 1 / zero;
- if (arq)
- *arq = uq;
- return (tmp.q);
- }
- if (uq < vq) {
- if (arq)
- *arq = uq;
- return (0);
- }
- u = &uspace[0];
- v = &vspace[0];
- q = &qspace[0];
-
- /*
- * Break dividend and divisor into digits in base B, then
- * count leading zeros to determine m and n. When done, we
- * will have:
- * u = (u[1]u[2]...u[m+n]) sub B
- * v = (v[1]v[2]...v[n]) sub B
- * v[1] != 0
- * 1 < n <= 4 (if n = 1, we use a different division algorithm)
- * m >= 0 (otherwise u < v, which we already checked)
- * m + n = 4
- * and thus
- * m = 4 - n <= 2
- */
- tmp.uq = uq;
- u[0] = 0;
- u[1] = HHALF(tmp.ul[H]);
- u[2] = LHALF(tmp.ul[H]);
- u[3] = HHALF(tmp.ul[L]);
- u[4] = LHALF(tmp.ul[L]);
- tmp.uq = vq;
- v[1] = HHALF(tmp.ul[H]);
- v[2] = LHALF(tmp.ul[H]);
- v[3] = HHALF(tmp.ul[L]);
- v[4] = LHALF(tmp.ul[L]);
- for (n = 4; v[1] == 0; v++) {
- if (--n == 1) {
- u_long rbj; /* r*B+u[j] (not root boy jim) */
- digit q1, q2, q3, q4;
-
- /*
- * Change of plan, per exercise 16.
- * r = 0;
- * for j = 1..4:
- * q[j] = floor((r*B + u[j]) / v),
- * r = (r*B + u[j]) % v;
- * We unroll this completely here.
- */
- t = v[2]; /* nonzero, by definition */
- q1 = u[1] / t;
- rbj = COMBINE(u[1] % t, u[2]);
- q2 = rbj / t;
- rbj = COMBINE(rbj % t, u[3]);
- q3 = rbj / t;
- rbj = COMBINE(rbj % t, u[4]);
- q4 = rbj / t;
- if (arq)
- *arq = rbj % t;
- tmp.ul[H] = COMBINE(q1, q2);
- tmp.ul[L] = COMBINE(q3, q4);
- return (tmp.q);
- }
- }
-
- /*
- * By adjusting q once we determine m, we can guarantee that
- * there is a complete four-digit quotient at &qspace[1] when
- * we finally stop.
- */
- for (m = 4 - n; u[1] == 0; u++)
- m--;
- for (i = 4 - m; --i >= 0;)
- q[i] = 0;
- q += 4 - m;
-
- /*
- * Here we run Program D, translated from MIX to C and acquiring
- * a few minor changes.
- *
- * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
- */
- d = 0;
- for (t = v[1]; t < B / 2; t <<= 1)
- d++;
- if (d > 0) {
- __shl(&u[0], m + n, d); /* u <<= d */
- __shl(&v[1], n - 1, d); /* v <<= d */
- }
- /*
- * D2: j = 0.
- */
- j = 0;
- v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
- v2 = v[2]; /* for D3 */
- do {
- register digit uj0, uj1, uj2;
-
- /*
- * D3: Calculate qhat (\^q, in TeX notation).
- * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
- * let rhat = (u[j]*B + u[j+1]) mod v[1].
- * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
- * decrement qhat and increase rhat correspondingly.
- * Note that if rhat >= B, v[2]*qhat < rhat*B.
- */
- uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
- uj1 = u[j + 1]; /* for D3 only */
- uj2 = u[j + 2]; /* for D3 only */
- if (uj0 == v1) {
- qhat = B;
- rhat = uj1;
- goto qhat_too_big;
- } else {
- u_long nn = COMBINE(uj0, uj1);
- qhat = nn / v1;
- rhat = nn % v1;
- }
- while (v2 * qhat > COMBINE(rhat, uj2)) {
- qhat_too_big:
- qhat--;
- if ((rhat += v1) >= B)
- break;
- }
- /*
- * D4: Multiply and subtract.
- * The variable `t' holds any borrows across the loop.
- * We split this up so that we do not require v[0] = 0,
- * and to eliminate a final special case.
- */
- for (t = 0, i = n; i > 0; i--) {
- t = u[i + j] - v[i] * qhat - t;
- u[i + j] = LHALF(t);
- t = (B - HHALF(t)) & (B - 1);
- }
- t = u[j] - t;
- u[j] = LHALF(t);
- /*
- * D5: test remainder.
- * There is a borrow if and only if HHALF(t) is nonzero;
- * in that (rare) case, qhat was too large (by exactly 1).
- * Fix it by adding v[1..n] to u[j..j+n].
- */
- if (HHALF(t)) {
- qhat--;
- for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
- t += u[i + j] + v[i];
- u[i + j] = LHALF(t);
- t = HHALF(t);
- }
- u[j] = LHALF(u[j] + t);
- }
- q[j] = qhat;
- } while (++j <= m); /* D7: loop on j. */
-
- /*
- * If caller wants the remainder, we have to calculate it as
- * u[m..m+n] >> d (this is at most n digits and thus fits in
- * u[m+1..m+n], but we may need more source digits).
- */
- if (arq) {
- if (d) {
- for (i = m + n; i > m; --i)
- u[i] = (u[i] >> d) |
- LHALF(u[i - 1] << (HALF_BITS - d));
- u[i] = 0;
- }
- tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
- tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
- *arq = tmp.q;
- }
-
- tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
- tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
- return (tmp.q);
-}
-
-/*
- * Return 0, 1, or 2 as a <, =, > b respectively.
- * Neither a nor b are considered signed.
- */
-int
-__ucmpdi2(a, b)
- u_quad_t a, b;
-{
- union uu aa, bb;
-
- aa.uq = a;
- bb.uq = b;
- return (aa.ul[H] < bb.ul[H] ? 0 : aa.ul[H] > bb.ul[H] ? 2 :
- aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1);
-}
-
-/*
- * Divide two unsigned quads.
- */
-u_quad_t
-__udivdi3(a, b)
- u_quad_t a, b;
-{
-
- return (__qdivrem(a, b, (u_quad_t *)0));
-}
-
-/*
- * Return remainder after dividing two unsigned quads.
- */
-u_quad_t
-__umoddi3(a, b)
- u_quad_t a, b;
-{
- u_quad_t r;
-
- (void)__qdivrem(a, b, &r);
- return (r);
-}
-
-/*
- * Divide two signed quads.
- * This function is new in GCC 7.
- */
-quad_t
-__divmoddi4(a, b, rem)
- quad_t a, b, *rem;
-{
- u_quad_t ua, ub, uq, ur;
- int negq, negr;
-
- if (a < 0)
- ua = -(u_quad_t)a, negq = 1, negr = 1;
- else
- ua = a, negq = 0, negr = 0;
- if (b < 0)
- ub = -(u_quad_t)b, negq ^= 1;
- else
- ub = b;
- uq = __qdivrem(ua, ub, &ur);
- if (rem)
- *rem = (negr ? -ur : ur);
- return (negq ? -uq : uq);
-}
-
-u_quad_t
-__udivmoddi4(u_quad_t a, u_quad_t b, u_quad_t *rem)
-{
- return __qdivrem(a, b, rem);
-}
-
-#else
-static int __attribute__((unused)) dummy;
-#endif /*deined (_X86_) && !defined (__x86_64__)*/
-