diff options
Diffstat (limited to 'vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c')
| -rw-r--r-- | vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c | 586 |
1 files changed, 0 insertions, 586 deletions
diff --git a/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c b/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c deleted file mode 100644 index 77bb1fe..0000000 --- a/vendor/zgui/libs/winpthreads/src/libgcc/dll_math.c +++ /dev/null @@ -1,586 +0,0 @@ -/*- - * Copyright (c) 1992, 1993 - * The Regents of the University of California. All rights reserved. - * - * This software was developed by the Computer Systems Engineering group - * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and - * contributed to Berkeley. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 4. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#ifndef _LIBKERN_QUAD_H_ -#define _LIBKERN_QUAD_H_ - -/* - * Quad arithmetic. - * - * This library makes the following assumptions: - * - * - The type long long (aka quad_t) exists. - * - * - A quad variable is exactly twice as long as `long'. - * - * - The machine's arithmetic is two's complement. - * - * This library can provide 128-bit arithmetic on a machine with 128-bit - * quads and 64-bit longs, for instance, or 96-bit arithmetic on machines - * with 48-bit longs. - */ -/* -#include <sys/cdefs.h> -#include <sys/types.h> -#include <sys/limits.h> -#include <sys/syslimits.h> -*/ - -#include <limits.h> -typedef long long quad_t; -typedef unsigned long long u_quad_t; -typedef unsigned long u_long; -#define CHAR_BIT __CHAR_BIT__ - -/* - * Define the order of 32-bit words in 64-bit words. - * For little endian only. - */ -#define _QUAD_HIGHWORD 1 -#define _QUAD_LOWWORD 0 - -/* - * Depending on the desired operation, we view a `long long' (aka quad_t) in - * one or more of the following formats. - */ -union uu { - quad_t q; /* as a (signed) quad */ - quad_t uq; /* as an unsigned quad */ - long sl[2]; /* as two signed longs */ - u_long ul[2]; /* as two unsigned longs */ -}; - -/* - * Define high and low longwords. - */ -#define H _QUAD_HIGHWORD -#define L _QUAD_LOWWORD - -/* - * Total number of bits in a quad_t and in the pieces that make it up. - * These are used for shifting, and also below for halfword extraction - * and assembly. - */ -#define QUAD_BITS (sizeof(quad_t) * CHAR_BIT) -#define LONG_BITS (sizeof(long) * CHAR_BIT) -#define HALF_BITS (sizeof(long) * CHAR_BIT / 2) - -/* - * Extract high and low shortwords from longword, and move low shortword of - * longword to upper half of long, i.e., produce the upper longword of - * ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.) - * - * These are used in the multiply code, to split a longword into upper - * and lower halves, and to reassemble a product as a quad_t, shifted left - * (sizeof(long)*CHAR_BIT/2). - */ -#define HHALF(x) ((x) >> HALF_BITS) -#define LHALF(x) ((x) & ((1 << HALF_BITS) - 1)) -#define LHUP(x) ((x) << HALF_BITS) - -typedef unsigned int qshift_t; - -quad_t __ashldi3(quad_t, qshift_t); -quad_t __ashrdi3(quad_t, qshift_t); -int __cmpdi2(quad_t a, quad_t b); -quad_t __divdi3(quad_t a, quad_t b); -quad_t __lshrdi3(quad_t, qshift_t); -quad_t __moddi3(quad_t a, quad_t b); -u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem); -u_quad_t __udivdi3(u_quad_t a, u_quad_t b); -u_quad_t __umoddi3(u_quad_t a, u_quad_t b); -int __ucmpdi2(u_quad_t a, u_quad_t b); -quad_t __divmoddi4(quad_t a, quad_t b, quad_t *rem); -u_quad_t __udivmoddi4(u_quad_t a, u_quad_t b, u_quad_t *rem); - -#endif /* !_LIBKERN_QUAD_H_ */ - -#if defined (_X86_) && !defined (__x86_64__) -/* - * Shift a (signed) quad value left (arithmetic shift left). - * This is the same as logical shift left! - */ -quad_t -__ashldi3(a, shift) - quad_t a; - qshift_t shift; -{ - union uu aa; - - aa.q = a; - if (shift >= LONG_BITS) { - aa.ul[H] = shift >= QUAD_BITS ? 0 : - aa.ul[L] << (shift - LONG_BITS); - aa.ul[L] = 0; - } else if (shift > 0) { - aa.ul[H] = (aa.ul[H] << shift) | - (aa.ul[L] >> (LONG_BITS - shift)); - aa.ul[L] <<= shift; - } - return (aa.q); -} - -/* - * Shift a (signed) quad value right (arithmetic shift right). - */ -quad_t -__ashrdi3(a, shift) - quad_t a; - qshift_t shift; -{ - union uu aa; - - aa.q = a; - if (shift >= LONG_BITS) { - long s; - - /* - * Smear bits rightward using the machine's right-shift - * method, whether that is sign extension or zero fill, - * to get the `sign word' s. Note that shifting by - * LONG_BITS is undefined, so we shift (LONG_BITS-1), - * then 1 more, to get our answer. - */ - s = (aa.sl[H] >> (LONG_BITS - 1)) >> 1; - aa.ul[L] = shift >= QUAD_BITS ? s : - aa.sl[H] >> (shift - LONG_BITS); - aa.ul[H] = s; - } else if (shift > 0) { - aa.ul[L] = (aa.ul[L] >> shift) | - (aa.ul[H] << (LONG_BITS - shift)); - aa.sl[H] >>= shift; - } - return (aa.q); -} - -/* - * Return 0, 1, or 2 as a <, =, > b respectively. - * Both a and b are considered signed---which means only the high word is - * signed. - */ -int -__cmpdi2(a, b) - quad_t a, b; -{ - union uu aa, bb; - - aa.q = a; - bb.q = b; - return (aa.sl[H] < bb.sl[H] ? 0 : aa.sl[H] > bb.sl[H] ? 2 : - aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1); -} - -/* - * Divide two signed quads. - * ??? if -1/2 should produce -1 on this machine, this code is wrong - */ -quad_t -__divdi3(a, b) - quad_t a, b; -{ - u_quad_t ua, ub, uq; - int neg; - - if (a < 0) - ua = -(u_quad_t)a, neg = 1; - else - ua = a, neg = 0; - if (b < 0) - ub = -(u_quad_t)b, neg ^= 1; - else - ub = b; - uq = __qdivrem(ua, ub, (u_quad_t *)0); - return (neg ? -uq : uq); -} - -/* - * Shift an (unsigned) quad value right (logical shift right). - */ -quad_t -__lshrdi3(a, shift) - quad_t a; - qshift_t shift; -{ - union uu aa; - - aa.q = a; - if (shift >= LONG_BITS) { - aa.ul[L] = shift >= QUAD_BITS ? 0 : - aa.ul[H] >> (shift - LONG_BITS); - aa.ul[H] = 0; - } else if (shift > 0) { - aa.ul[L] = (aa.ul[L] >> shift) | - (aa.ul[H] << (LONG_BITS - shift)); - aa.ul[H] >>= shift; - } - return (aa.q); -} - -/* - * Return remainder after dividing two signed quads. - * - * XXX - * If -1/2 should produce -1 on this machine, this code is wrong. - */ -quad_t -__moddi3(a, b) - quad_t a, b; -{ - u_quad_t ua, ub, ur; - int neg; - - if (a < 0) - ua = -(u_quad_t)a, neg = 1; - else - ua = a, neg = 0; - if (b < 0) - ub = -(u_quad_t)b; - else - ub = b; - (void)__qdivrem(ua, ub, &ur); - return (neg ? -ur : ur); -} - - -/* - * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), - * section 4.3.1, pp. 257--259. - */ - -#define B (1 << HALF_BITS) /* digit base */ - -/* Combine two `digits' to make a single two-digit number. */ -#define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) - -/* select a type for digits in base B: use unsigned short if they fit */ -#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff -typedef unsigned short digit; -#else -typedef u_long digit; -#endif - -/* - * Shift p[0]..p[len] left `sh' bits, ignoring any bits that - * `fall out' the left (there never will be any such anyway). - * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. - */ -static void -__shl(register digit *p, register int len, register int sh) -{ - register int i; - - for (i = 0; i < len; i++) - p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); - p[i] = LHALF(p[i] << sh); -} - -/* - * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. - * - * We do this in base 2-sup-HALF_BITS, so that all intermediate products - * fit within u_long. As a consequence, the maximum length dividend and - * divisor are 4 `digits' in this base (they are shorter if they have - * leading zeros). - */ -u_quad_t -__qdivrem(uq, vq, arq) - u_quad_t uq, vq, *arq; -{ - union uu tmp; - digit *u, *v, *q; - register digit v1, v2; - u_long qhat, rhat, t; - int m, n, d, j, i; - digit uspace[5], vspace[5], qspace[5]; - - /* - * Take care of special cases: divide by zero, and u < v. - */ - if (vq == 0) { - /* divide by zero. */ - static volatile const unsigned int zero = 0; - - tmp.ul[H] = tmp.ul[L] = 1 / zero; - if (arq) - *arq = uq; - return (tmp.q); - } - if (uq < vq) { - if (arq) - *arq = uq; - return (0); - } - u = &uspace[0]; - v = &vspace[0]; - q = &qspace[0]; - - /* - * Break dividend and divisor into digits in base B, then - * count leading zeros to determine m and n. When done, we - * will have: - * u = (u[1]u[2]...u[m+n]) sub B - * v = (v[1]v[2]...v[n]) sub B - * v[1] != 0 - * 1 < n <= 4 (if n = 1, we use a different division algorithm) - * m >= 0 (otherwise u < v, which we already checked) - * m + n = 4 - * and thus - * m = 4 - n <= 2 - */ - tmp.uq = uq; - u[0] = 0; - u[1] = HHALF(tmp.ul[H]); - u[2] = LHALF(tmp.ul[H]); - u[3] = HHALF(tmp.ul[L]); - u[4] = LHALF(tmp.ul[L]); - tmp.uq = vq; - v[1] = HHALF(tmp.ul[H]); - v[2] = LHALF(tmp.ul[H]); - v[3] = HHALF(tmp.ul[L]); - v[4] = LHALF(tmp.ul[L]); - for (n = 4; v[1] == 0; v++) { - if (--n == 1) { - u_long rbj; /* r*B+u[j] (not root boy jim) */ - digit q1, q2, q3, q4; - - /* - * Change of plan, per exercise 16. - * r = 0; - * for j = 1..4: - * q[j] = floor((r*B + u[j]) / v), - * r = (r*B + u[j]) % v; - * We unroll this completely here. - */ - t = v[2]; /* nonzero, by definition */ - q1 = u[1] / t; - rbj = COMBINE(u[1] % t, u[2]); - q2 = rbj / t; - rbj = COMBINE(rbj % t, u[3]); - q3 = rbj / t; - rbj = COMBINE(rbj % t, u[4]); - q4 = rbj / t; - if (arq) - *arq = rbj % t; - tmp.ul[H] = COMBINE(q1, q2); - tmp.ul[L] = COMBINE(q3, q4); - return (tmp.q); - } - } - - /* - * By adjusting q once we determine m, we can guarantee that - * there is a complete four-digit quotient at &qspace[1] when - * we finally stop. - */ - for (m = 4 - n; u[1] == 0; u++) - m--; - for (i = 4 - m; --i >= 0;) - q[i] = 0; - q += 4 - m; - - /* - * Here we run Program D, translated from MIX to C and acquiring - * a few minor changes. - * - * D1: choose multiplier 1 << d to ensure v[1] >= B/2. - */ - d = 0; - for (t = v[1]; t < B / 2; t <<= 1) - d++; - if (d > 0) { - __shl(&u[0], m + n, d); /* u <<= d */ - __shl(&v[1], n - 1, d); /* v <<= d */ - } - /* - * D2: j = 0. - */ - j = 0; - v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ - v2 = v[2]; /* for D3 */ - do { - register digit uj0, uj1, uj2; - - /* - * D3: Calculate qhat (\^q, in TeX notation). - * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and - * let rhat = (u[j]*B + u[j+1]) mod v[1]. - * While rhat < B and v[2]*qhat > rhat*B+u[j+2], - * decrement qhat and increase rhat correspondingly. - * Note that if rhat >= B, v[2]*qhat < rhat*B. - */ - uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ - uj1 = u[j + 1]; /* for D3 only */ - uj2 = u[j + 2]; /* for D3 only */ - if (uj0 == v1) { - qhat = B; - rhat = uj1; - goto qhat_too_big; - } else { - u_long nn = COMBINE(uj0, uj1); - qhat = nn / v1; - rhat = nn % v1; - } - while (v2 * qhat > COMBINE(rhat, uj2)) { - qhat_too_big: - qhat--; - if ((rhat += v1) >= B) - break; - } - /* - * D4: Multiply and subtract. - * The variable `t' holds any borrows across the loop. - * We split this up so that we do not require v[0] = 0, - * and to eliminate a final special case. - */ - for (t = 0, i = n; i > 0; i--) { - t = u[i + j] - v[i] * qhat - t; - u[i + j] = LHALF(t); - t = (B - HHALF(t)) & (B - 1); - } - t = u[j] - t; - u[j] = LHALF(t); - /* - * D5: test remainder. - * There is a borrow if and only if HHALF(t) is nonzero; - * in that (rare) case, qhat was too large (by exactly 1). - * Fix it by adding v[1..n] to u[j..j+n]. - */ - if (HHALF(t)) { - qhat--; - for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ - t += u[i + j] + v[i]; - u[i + j] = LHALF(t); - t = HHALF(t); - } - u[j] = LHALF(u[j] + t); - } - q[j] = qhat; - } while (++j <= m); /* D7: loop on j. */ - - /* - * If caller wants the remainder, we have to calculate it as - * u[m..m+n] >> d (this is at most n digits and thus fits in - * u[m+1..m+n], but we may need more source digits). - */ - if (arq) { - if (d) { - for (i = m + n; i > m; --i) - u[i] = (u[i] >> d) | - LHALF(u[i - 1] << (HALF_BITS - d)); - u[i] = 0; - } - tmp.ul[H] = COMBINE(uspace[1], uspace[2]); - tmp.ul[L] = COMBINE(uspace[3], uspace[4]); - *arq = tmp.q; - } - - tmp.ul[H] = COMBINE(qspace[1], qspace[2]); - tmp.ul[L] = COMBINE(qspace[3], qspace[4]); - return (tmp.q); -} - -/* - * Return 0, 1, or 2 as a <, =, > b respectively. - * Neither a nor b are considered signed. - */ -int -__ucmpdi2(a, b) - u_quad_t a, b; -{ - union uu aa, bb; - - aa.uq = a; - bb.uq = b; - return (aa.ul[H] < bb.ul[H] ? 0 : aa.ul[H] > bb.ul[H] ? 2 : - aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1); -} - -/* - * Divide two unsigned quads. - */ -u_quad_t -__udivdi3(a, b) - u_quad_t a, b; -{ - - return (__qdivrem(a, b, (u_quad_t *)0)); -} - -/* - * Return remainder after dividing two unsigned quads. - */ -u_quad_t -__umoddi3(a, b) - u_quad_t a, b; -{ - u_quad_t r; - - (void)__qdivrem(a, b, &r); - return (r); -} - -/* - * Divide two signed quads. - * This function is new in GCC 7. - */ -quad_t -__divmoddi4(a, b, rem) - quad_t a, b, *rem; -{ - u_quad_t ua, ub, uq, ur; - int negq, negr; - - if (a < 0) - ua = -(u_quad_t)a, negq = 1, negr = 1; - else - ua = a, negq = 0, negr = 0; - if (b < 0) - ub = -(u_quad_t)b, negq ^= 1; - else - ub = b; - uq = __qdivrem(ua, ub, &ur); - if (rem) - *rem = (negr ? -ur : ur); - return (negq ? -uq : uq); -} - -u_quad_t -__udivmoddi4(u_quad_t a, u_quad_t b, u_quad_t *rem) -{ - return __qdivrem(a, b, rem); -} - -#else -static int __attribute__((unused)) dummy; -#endif /*deined (_X86_) && !defined (__x86_64__)*/ - |
