1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
const std = @import("std");
const Point = struct {
x: i32,
y: i32,
};
pub fn Node(T: type) type {
return struct {
pos: Point,
data: T,
};
}
pub fn Quad(T: type) type {
return struct {
allocator: std.mem.Allocator,
node: ?*Node(T),
topLeft: Point,
bottomRight: Point,
children: [4]?*Quad(T),
pub fn init(allocator: std.mem.Allocator, tl: Point, br: Point) Quad(T) {
return Quad(T){
.allocator = allocator,
.node = null,
.topLeft = tl,
.bottomRight = br,
.children = [4]?*Quad(T){ null, null, null, null },
};
}
inline fn inBoundry(self: Quad(T), pos: Point) bool {
return pos.x >= self.topLeft.x and pos.x <= self.bottomRight.x and pos.y >= self.topLeft.y and pos.y <= self.bottomRight.y;
}
pub fn search(self: Quad(T), p: Point) ?*Node(T) {
if (!self.inBoundry(p)) return null;
if (self.node) |n| return n;
if (@divTrunc((self.topLeft.x + self.bottomRight.x), 2) >= p.x) {
if (@divTrunc((self.topLeft.y + self.bottomRight.y), 2) >= p.y) {
if (self.children[0] == null)
return null;
return self.children[0].?.search(p);
} else {
if (self.children[2] == null)
return null;
return self.children[2].?.search(p);
}
} else {
if (@divTrunc((self.topLeft.y + self.bottomRight.y), 2) >= p.y) {
if (self.children[1] == null)
return null;
return self.children[1].?.search(p);
} else {
if (self.children[3] == null)
return null;
return self.children[3].?.search(p);
}
}
}
pub fn insert(self: *Quad(T), data: T, pos: Point) !void {
const node: ?*Node(T) = try self.allocator.create(Node(T));
node.* = Node(T){ .data = data, .pos = pos };
const nNode = node.?;
if (!self.inBoundry(nNode.pos)) return;
if (@abs(self.topLeft.x - self.bottomRight.x) <= 1 and @abs(self.topLeft.y - self.bottomRight.y) <= 1) {
self.node = if (self.node == null) node else self.node;
return;
}
if (@divTrunc((self.topLeft.x + self.bottomRight.x), 2) >= nNode.pos.x) {
if (@divTrunc((self.topLeft.y + self.bottomRight.y), 2) >= nNode.pos.y) {
if (self.children[0] == null) {
self.children[0] = try self.allocator.create(Quad(T));
self.children[0].?.* = Quad(T).init(
self.allocator,
self.topLeft,
.{
.x = @divTrunc((self.topLeft.x + self.bottomRight.x), 2),
.y = @divTrunc((self.topLeft.y + self.bottomRight.y), 2),
},
);
}
try self.children[0].?.insert(node);
} else {
if (self.children[2] == null) {
self.children[2] = try self.allocator.create(Quad(T));
self.children[2].?.* = Quad(T).init(
self.allocator,
.{
.x = self.topLeft.x,
.y = @divTrunc(self.topLeft.y + self.bottomRight.y, 2),
},
.{
.x = @divTrunc((self.topLeft.x + self.bottomRight.x), 2),
.y = self.bottomRight.y,
},
);
}
try self.children[2].?.insert(node);
}
} else {
if (@divTrunc((self.topLeft.y + self.bottomRight.y), 2) >= nNode.pos.y) {
if (self.children[1] == null) {
self.children[1] = try self.allocator.create(Quad(T));
self.children[1].?.* = Quad(T).init(
self.allocator,
.{
.x = @divTrunc(self.topLeft.x + self.bottomRight.x, 2),
.y = self.topLeft.y,
},
.{
.x = self.bottomRight.x,
.y = @divTrunc((self.topLeft.y + self.bottomRight.y), 2),
},
);
}
try self.children[1].?.insert(node);
} else {
if (self.children[3] == null) {
self.children[3] = try self.allocator.create(Quad(T));
self.children[3].?.* = Quad(T).init(
self.allocator,
.{
.x = @divTrunc((self.topLeft.x + self.bottomRight.x), 2),
.y = @divTrunc((self.topLeft.y + self.bottomRight.y), 2),
},
self.bottomRight,
);
}
try self.children[3].?.insert(node);
}
}
}
pub fn deinit(self: *Quad(T)) void {
if (self.node) |n| self.allocator.destroy(n);
for (self.children) |child|
if (child) |c| {
c.deinit();
self.allocator.destroy(c);
};
}
};
}
|