aboutsummaryrefslogtreecommitdiff
path: root/src/particle.zig
blob: 05ffb7f787a67d17336c0ae7289f9716a89a7771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
const cfg = @import("config.zig");
const std = @import("std");
const rl = @import("raylib");

/// Generate the set of rules the particles will abide by
pub fn ruleMatrix() [cfg.colorAmnt][cfg.colorAmnt]f32 {
    const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp()))));
    var prng = std.rand.DefaultPrng.init(seed);
    var rules: [cfg.colorAmnt][cfg.colorAmnt]f32 = undefined;
    for (0..cfg.colorAmnt) |i| {
        for (0..cfg.colorAmnt) |j| {
            var val = prng.random().float(f32);
            const isNeg = prng.random().uintAtMost(u8, 1);
            if (isNeg == 1) val = 0 - val;
            rules[i][j] = val;
        }
    }
    return rules;
}

/// Prints rules generated from ruleMatrix()
pub fn printRules(rules: [cfg.colorAmnt][cfg.colorAmnt]f32) void {
    std.debug.print("\n|{s:^6}", .{"Rules"});
    for (0..cfg.colors.len) |c|
        std.debug.print("| {s:^4} ", .{colorToString(c)});

    std.debug.print("|\n", .{});
    for (rules, 0..) |row, i| {
        std.debug.print("| {s:^4} ", .{colorToString(i)});
        for (row) |col|
            std.debug.print("| {d:^4.1} ", .{col});

        std.debug.print("|\n", .{});
    }
}

/// Convert the color index to a string
pub fn colorToString(c: usize) []const u8 {
    return switch (c) {
        0 => "Red",
        1 => "Green",
        2 => "Blue",
        3 => "Yellow",
        4 => "Magenta",
        5 => "Brown",
        6 => "Orange",
        7 => "Gray",
        else => " ",
    };
}

/// Initialize a MultiArrayList of size amnt with particles created by createParticle
pub fn initParticles(allocator: std.mem.Allocator, amnt: u32) !std.MultiArrayList(particle) {
    var particles = std.MultiArrayList(particle){};
    try particles.setCapacity(allocator, cfg.particleMax);
    for (0..amnt) |_| {
        try particles.append(allocator, createParticle());
    }
    return particles;
}

/// Applies forces from the ruleset to each particle
pub fn updateVelocities(particles: std.MultiArrayList(particle), rules: [cfg.colorAmnt][cfg.colorAmnt]f32) void {
    const colorList = particles.items(.colorId);
    var xvel = particles.items(.xvel);
    var yvel = particles.items(.yvel);
    for (particles.items(.x), particles.items(.y), 0..) |x, y, i| {
        var forceX: f32 = 0.0;
        var forceY: f32 = 0.0;

        for (particles.items(.x), particles.items(.y), 0..) |x2, y2, j| {
            if (i == j) continue;
            const rx: f32 = @floatFromInt(x - x2);
            const ry: f32 = @floatFromInt(y - y2);
            var r = @sqrt(rx * rx + ry * ry);
            if (r == 0) {
                r = 0.0001;
            }
            if (r > 0 and r < cfg.radius) {
                const f = force(r, rules[colorList[i]][colorList[j]]);
                forceX = forceX + rx / r * f;
                forceY = forceY + ry / r * f;
            }
        }

        forceX = forceX * cfg.minDistance / cfg.radius;
        forceY = forceY * cfg.minDistance / cfg.radius;

        xvel[i] = xvel[i] * 0.95 + forceX;
        yvel[i] = yvel[i] * 0.95 + forceY;
    }
}

/// Applies the particles velocity and updates position
pub fn updatePosition(particles: std.MultiArrayList(particle)) void {
    for (particles.items(.y), particles.items(.yvel)) |*y, yvel|
        y.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(y.*)) + yvel)))), cfg.screenHeight);

    for (particles.items(.x), particles.items(.xvel)) |*x, xvel|
        x.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(x.*)) + xvel)))), cfg.screenWidth);
}

/// Draw the particles onto the screen using raylib
pub fn draw(particles: std.MultiArrayList(particle)) void {
    for (particles.items(.y), particles.items(.x), particles.items(.colorId)) |*y, *x, colorId|
        rl.drawRectangle(x.*, y.*, 5, 5, cfg.colors[colorId]);
}

const particle = struct {
    colorId: u32,
    x: i32,
    y: i32,
    xvel: f32,
    yvel: f32,
};

fn force(distance: f32, attraction: f32) f32 {
    const beta = cfg.minDistance / cfg.radius;
    const r: f32 = distance / cfg.radius;
    if (r < beta)
        return -(r / beta - 1.0);
    if (beta <= r and r < 1)
        return attraction * (1 - @abs(2.0 * r - 1.0 - beta) / (1.0 - beta));
    return 0;
}

fn createParticle() particle {
    const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp()))));
    var prng = std.rand.DefaultPrng.init(seed);
    const x = prng.random().uintLessThan(u32, cfg.screenWidth);
    const y = prng.random().uintLessThan(u32, cfg.screenHeight);
    const color = prng.random().uintLessThan(u32, cfg.colorAmnt);
    return particle{
        .colorId = color,
        .x = @intCast(x),
        .y = @intCast(y),
        .xvel = 0,
        .yvel = 0,
    };
}