1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
const std = @import("std");
const rl = @import("raylib");
const particle = struct {
colorId: u32,
attrs: particleAttrs,
x: i32,
y: i32,
xvel: f32,
yvel: f32,
};
const particleAttrs = struct {};
const screenWidth = 2560;
const screenHeight = 1440;
const particleMax = 5000;
const radius = 100.0;
const minDistance = 20.0;
const colors = [_]rl.Color{
rl.Color.red,
rl.Color.green,
rl.Color.blue,
rl.Color.yellow,
rl.Color.magenta,
rl.Color.brown,
rl.Color.orange,
};
const colorAmnt = colors.len;
pub fn main() !void {
const rules = ruleMatrix(colors.len);
printRules(rules);
rl.initWindow(screenWidth, screenHeight, "Particle Simulator");
defer rl.closeWindow();
rl.setTargetFPS(60);
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
var particles = try initParticles(gpa.allocator(), 3000);
defer particles.deinit(gpa.allocator());
while (!rl.windowShouldClose()) {
rl.beginDrawing();
if (rl.isKeyPressed(rl.KeyboardKey.key_q)) break;
defer rl.endDrawing();
updateVelocities(particles, rules);
for (particles.items(.y), particles.items(.yvel)) |*y, yvel|
y.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(y.*)) + yvel)))), screenHeight);
for (particles.items(.x), particles.items(.xvel)) |*x, xvel|
x.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(x.*)) + xvel)))), screenWidth);
for (particles.items(.y), particles.items(.x), particles.items(.colorId)) |*y, *x, colorId|
rl.drawRectangle(x.*, y.*, 5, 5, colors[colorId]);
rl.clearBackground(rl.Color.black);
}
}
fn colorToString(c: usize) []const u8 {
return switch (c) {
0 => "R",
1 => "G",
2 => "Bl",
3 => "Y",
4 => "M",
5 => "Br",
6 => "O",
else => " ",
};
}
fn printRules(rules: [colorAmnt][colorAmnt]f32) void {
std.debug.print("\n|{s:^6}", .{"Rules"});
for (0..colors.len) |c|
std.debug.print("| {s:^4} ", .{colorToString(c)});
std.debug.print("|\n", .{});
for (rules, 0..) |row, i| {
std.debug.print("| {s:^4} ", .{colorToString(i)});
for (row) |col|
std.debug.print("| {d:^4.1} ", .{col});
std.debug.print("|\n", .{});
}
}
fn force(distance: f32, attraction: f32) f32 {
const beta = minDistance / radius;
const r: f32 = distance / radius;
if (r < beta)
return -(r / beta - 1.0);
if (beta <= r and r < 1)
return attraction * (1 - @abs(2.0 * r - 1.0 - beta) / (1.0 - beta));
return 0;
}
fn updateVelocities(particles: std.MultiArrayList(particle), rules: [colorAmnt][colorAmnt]f32) void {
const colorList = particles.items(.colorId);
var xvel = particles.items(.xvel);
var yvel = particles.items(.yvel);
for (particles.items(.x), particles.items(.y), 0..) |x, y, i| {
var forceX: f32 = 0.0;
var forceY: f32 = 0.0;
for (particles.items(.x), particles.items(.y), 0..) |x2, y2, j| {
if (i == j) continue;
const rx: f32 = @floatFromInt(x - x2);
const ry: f32 = @floatFromInt(y - y2);
var r = @sqrt(rx * rx + ry * ry);
if (r == 0) {
r = 0.0001;
}
if (r > 0 and r < radius) {
const f = force(r, rules[colorList[i]][colorList[j]]);
forceX = forceX + rx / r * f;
forceY = forceY + ry / r * f;
}
}
forceX = forceX * minDistance / radius;
forceY = forceY * minDistance / radius;
xvel[i] = xvel[i] * 0.95 + forceX;
yvel[i] = yvel[i] * 0.95 + forceY;
}
}
/// Generates a particle with a random Color and Location
pub fn createParticle(attrs: particleAttrs) particle {
const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp()))));
var prng = std.rand.DefaultPrng.init(seed);
const x = prng.random().uintLessThan(u32, screenWidth);
const y = prng.random().uintLessThan(u32, screenHeight);
const color = prng.random().uintLessThan(u32, colorAmnt);
return particle{
.colorId = color,
.attrs = attrs,
.x = @intCast(x),
.y = @intCast(y),
.xvel = 0,
.yvel = 0,
};
}
fn ruleMatrix(comptime size: u32) [size][size]f32 {
const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp()))));
var prng = std.rand.DefaultPrng.init(seed);
var rules: [size][size]f32 = undefined;
for (0..size) |i| {
for (0..size) |j| {
var val = prng.random().float(f32);
const isNeg = prng.random().uintAtMost(u8, 1);
if (isNeg == 1) val = 0 - val;
rules[i][j] = val;
}
}
return rules;
}
/// Initialize a MultiArrayList of size amnt with particles created by createParticle
pub fn initParticles(allocator: std.mem.Allocator, amnt: u32) !std.MultiArrayList(particle) {
var particles = std.MultiArrayList(particle){};
try particles.setCapacity(allocator, 10000);
for (0..amnt) |_| {
try particles.append(allocator, createParticle(.{}));
}
return particles;
}
|