const cfg = @import("config.zig"); const std = @import("std"); const rl = @import("raylib"); /// Generate the set of rules the particles will abide by pub fn ruleMatrix() [cfg.colorAmnt][cfg.colorAmnt]f32 { const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp())))); var prng = std.rand.DefaultPrng.init(seed); var rules: [cfg.colorAmnt][cfg.colorAmnt]f32 = undefined; for (0..cfg.colorAmnt) |i| { for (0..cfg.colorAmnt) |j| { var val = prng.random().float(f32); const isNeg = prng.random().uintAtMost(u8, 1); if (isNeg == 1) val = 0 - val; rules[i][j] = val; } } return rules; } /// Prints rules generated from ruleMatrix() pub fn printRules(rules: [cfg.colorAmnt][cfg.colorAmnt]f32) void { std.debug.print("\n|{s:^6}", .{"Rules"}); for (0..cfg.colors.len) |c| std.debug.print("| {s:^4} ", .{colorToString(c)}); std.debug.print("|\n", .{}); for (rules, 0..) |row, i| { std.debug.print("| {s:^4} ", .{colorToString(i)}); for (row) |col| std.debug.print("| {d:^4.1} ", .{col}); std.debug.print("|\n", .{}); } } /// Initialize a MultiArrayList of size amnt with particles created by createParticle pub fn initParticles(allocator: std.mem.Allocator, amnt: u32) !std.MultiArrayList(particle) { var particles = std.MultiArrayList(particle){}; try particles.setCapacity(allocator, cfg.particleMax); for (0..amnt) |_| { try particles.append(allocator, createParticle()); } return particles; } /// Applies forces from the ruleset to each particle pub fn updateVelocities(particles: std.MultiArrayList(particle), rules: [cfg.colorAmnt][cfg.colorAmnt]f32) void { const colorList = particles.items(.colorId); var xvel = particles.items(.xvel); var yvel = particles.items(.yvel); for (particles.items(.x), particles.items(.y), 0..) |x, y, i| { var forceX: f32 = 0.0; var forceY: f32 = 0.0; for (particles.items(.x), particles.items(.y), 0..) |x2, y2, j| { if (i == j) continue; const rx: f32 = @floatFromInt(x - x2); const ry: f32 = @floatFromInt(y - y2); var r = @sqrt(rx * rx + ry * ry); if (r == 0) { r = 0.0001; } if (r > 0 and r < cfg.radius) { const f = force(r, rules[colorList[i]][colorList[j]]); forceX = forceX + rx / r * f; forceY = forceY + ry / r * f; } } forceX = forceX * cfg.minDistance / cfg.radius; forceY = forceY * cfg.minDistance / cfg.radius; xvel[i] = xvel[i] * 0.95 + forceX; yvel[i] = yvel[i] * 0.95 + forceY; } } /// Applies the particles velocity and updates position pub fn updatePosition(particles: std.MultiArrayList(particle)) void { for (particles.items(.y), particles.items(.yvel)) |*y, yvel| y.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(y.*)) + yvel)))), cfg.screenHeight); for (particles.items(.x), particles.items(.xvel)) |*x, xvel| x.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(x.*)) + xvel)))), cfg.screenWidth); } /// Draw the particles onto the screen using raylib pub fn draw(particles: std.MultiArrayList(particle)) void { for (particles.items(.y), particles.items(.x), particles.items(.colorId)) |*y, *x, colorId| rl.drawRectangle(x.*, y.*, 5, 5, cfg.colors[colorId]); } const particle = struct { colorId: u32, x: i32, y: i32, xvel: f32, yvel: f32, }; fn colorToString(c: usize) []const u8 { return switch (c) { 0 => "R", 1 => "G", 2 => "Bl", 3 => "Y", 4 => "M", 5 => "Br", 6 => "O", else => " ", }; } fn force(distance: f32, attraction: f32) f32 { const beta = cfg.minDistance / cfg.radius; const r: f32 = distance / cfg.radius; if (r < beta) return -(r / beta - 1.0); if (beta <= r and r < 1) return attraction * (1 - @abs(2.0 * r - 1.0 - beta) / (1.0 - beta)); return 0; } fn createParticle() particle { const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp())))); var prng = std.rand.DefaultPrng.init(seed); const x = prng.random().uintLessThan(u32, cfg.screenWidth); const y = prng.random().uintLessThan(u32, cfg.screenHeight); const color = prng.random().uintLessThan(u32, cfg.colorAmnt); return particle{ .colorId = color, .x = @intCast(x), .y = @intCast(y), .xvel = 0, .yvel = 0, }; }