const cfg = @import("config.zig"); const std = @import("std"); const rl = @import("raylib"); pub const particle = struct { colorId: u32, x: i32, y: i32, xvel: f32, yvel: f32, }; /// Initialize a MultiArrayList of size amnt with particles created by createParticle pub fn initParticles(allocator: std.mem.Allocator, amnt: u32) !std.MultiArrayList(particle) { var particles = std.MultiArrayList(particle){}; try particles.setCapacity(allocator, cfg.particleMax); for (0..amnt) |_| try particles.append(allocator, createParticle()); return particles; } /// Applies forces from the ruleset to each particle pub fn updateVelocities( particles: *std.MultiArrayList(particle), threadidx: u64, ) void { const rules = cfg.rules; const colorList = particles.items(.colorId); var xvel = particles.items(.xvel); var yvel = particles.items(.yvel); var i: usize = threadidx; while (i <= particles.len) : (i += cfg.numThreads) { const p = particles.get(i); var forceX: f32 = 0.0; var forceY: f32 = 0.0; var j: usize = threadidx; while (j <= particles.len) : (j += 1) { const p2 = particles.get(j); if (i == j) continue; var check2x = p.x - rl.getScreenWidth(); var check2y = p.y - rl.getScreenHeight(); if (p.x < @divExact(rl.getScreenWidth(), 2)) check2x = p.x + rl.getScreenWidth(); if (p.y < @divExact(rl.getScreenHeight(), 2)) check2y = p.y + rl.getScreenHeight(); var distance_x: f32 = @floatFromInt(p.x - p2.x); var distance_y: f32 = @floatFromInt(p.y - p2.y); const check2rx: f32 = @floatFromInt(check2x - p2.x); const check2ry: f32 = @floatFromInt(check2y - p2.y); if (@abs(distance_x) > @abs(check2rx)) distance_x = check2rx; if (@abs(distance_y) > @abs(check2ry)) distance_y = check2ry; if (distance_x > cfg.radius or distance_y > cfg.radius) continue; var distance = @sqrt(distance_x * distance_x + distance_y * distance_y); if (distance == 0) distance = 0.0001; if (distance > 0 and distance < cfg.radius) { const f = -force(distance, rules[colorList[i]][colorList[j]]); forceX += (distance_x / distance) * f; forceY += (distance_y / distance) * f; } } forceX = forceX * cfg.minDistance / cfg.radius; forceY = forceY * cfg.minDistance / cfg.radius; xvel[i] = xvel[i] * 0.95 + forceX; yvel[i] = yvel[i] * 0.95 + forceY; } } /// Applies the particles velocity and updates position pub fn updatePosition(particles: std.MultiArrayList(particle)) void { for (particles.items(.y), particles.items(.yvel)) |*y, yvel| // (y + yvel) % screenHeight y.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(y.*)) + yvel)))), rl.getScreenHeight()); for (particles.items(.x), particles.items(.xvel)) |*x, xvel| // (x + xvel) % screenWidth x.* = @mod(@as(i32, @intFromFloat(@round((@as(f32, @floatFromInt(x.*)) + xvel)))), rl.getScreenWidth()); } /// Draw the particles onto the screen using raylib pub fn draw(particles: std.MultiArrayList(particle)) void { for (particles.items(.y), particles.items(.x), particles.items(.colorId)) |*y, *x, colorId| rl.drawRectangle(x.*, y.*, 5, 5, cfg.colors[colorId]); } fn force(distance: f32, attraction: f32) f32 { const beta = cfg.minDistance / cfg.radius; const r: f32 = distance / cfg.radius; if (r < beta) return ((beta - r) / (beta - 1.0)); if (beta <= r and r < 1) return attraction * (1 - @abs(2.0 * r - 1.0 - beta) / (1.0 - beta)); return 0; } pub fn createParticle() particle { const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp())))); var prng = std.rand.DefaultPrng.init(seed); const x = prng.random().uintLessThan(u32, @intCast(rl.getScreenWidth())); const y = prng.random().uintLessThan(u32, @intCast(rl.getScreenHeight())); const color = prng.random().uintLessThan(u32, cfg.colorAmnt); return particle{ .colorId = color, .x = @intCast(x), .y = @intCast(y), .xvel = 0, .yvel = 0, }; } //TODO: Create tests test "Force values" { const expect = std.testing.expect; cfg.radius = 50; cfg.minDistance = 20; const belowMin = force(5.0, 0.5); const aboveMin = force(25.0, 0.5); try expect(aboveMin > 0); try expect(belowMin < 0); }