const std = @import("std"); const Type = std.builtin.Type; fn typeVerify(T: type, expected: anytype) Type { const expectedType = @TypeOf(expected); const expectedTypeInfo = @typeInfo(expectedType); if (expectedTypeInfo != .@"struct") @compileError("Expected struct or tuple, found " ++ @typeName(expectedType)); const realTypeInfo = @typeInfo(T); for (expected) |e| { if(realTypeInfo == e) return realTypeInfo; } for (expected) |e| @compileError("Expected one of " ++ @tagName(e) ++ ", found " ++ @typeName(T)); return realTypeInfo; } /// ```zig /// (fn (fn (b) c, fn (a) b) fn (a) c) /// ``` /// Function composition /// Type signature: (a -> b) -> (b -> c) -> (a -> c) /// `outerFunc` and `innerFunc` are functions of types `b -> c` and `a -> b` respectively /// Haskell equivalent: `outerFunc . innerFunc` pub fn compose( comptime outerFunc: anytype, comptime innerFunc: anytype ) blk:{ _=typeVerify(@TypeOf(outerFunc), .{ .@"fn" }); _=typeVerify(@TypeOf(innerFunc), .{ .@"fn" }); const out = @typeInfo(@TypeOf(outerFunc)).@"fn".return_type.?; const in = @typeInfo(@TypeOf(innerFunc)).@"fn".params[0].type.?; break :blk fn(in) out; } { const out = @typeInfo(@TypeOf(outerFunc)).@"fn".return_type.?; const in = @typeInfo(@TypeOf(innerFunc)).@"fn".params[0].type.?; return struct { fn func(input: in) out { return outerFunc(innerFunc(input)); } }.func; } /// ```zig /// (fn (Allocator, fn (fn (a) b, []a) error{OutOfMemory}![]b) /// ``` /// Map a function onto a list of values, allocating space for the new slice /// Type signature: `(a -> b) -> [a] -> [b]` /// `func` is of type `a -> b`, where `items` is of type `[a]`. /// `map` will return a slice of type `[b]` /// Haskell equivalent: `map func items` pub fn mapAlloc( allocator: std.mem.Allocator, func: anytype, items: anytype, ) error{OutOfMemory}!blk:{ const funcInfo = typeVerify(@TypeOf(func), .{ .@"fn" }); const itemsInfo = typeVerify(@TypeOf(items), .{ .array, .pointer }); switch (itemsInfo) { .pointer => |p| if(p.size != .many and p.size != .slice) @compileError("Expected pointer of size 'many' or 'slice', found " ++ @tagName(p)), else =>{}, } break :blk []funcInfo.@"fn".return_type.?; } { const funcInfo = typeVerify(@TypeOf(func), .{ .@"fn" }); var result = try allocator.alloc(funcInfo.@"fn".return_type.?, items.len); for(items, 0..) |item, i| result[i] = func(item); return result; } /// ```zig /// (fn (Allocator, fn (fn (a) b, []a, *[]b) void) /// ``` /// Map a function onto a list of values, using a buffer /// Type signature: `(a -> b) -> [a] -> [b]` /// `func` is of type `a -> b`, where `items` is of type `[a]` and `buffer` is a pointer to a value of type `[b]`. /// Haskell equivalent: `map func items` pub fn map( func: anytype, items: anytype, buffer: anytype, ) void { _=typeVerify(@TypeOf(func), .{ .@"fn" }); const itemsInfo = typeVerify(@TypeOf(items), .{ .pointer, .array }); const bufferInfo = typeVerify(@TypeOf(buffer), .{ .pointer }); const bufferChildInfo = typeVerify(bufferInfo.pointer.child, .{ .pointer, .array }); switch (itemsInfo) { .pointer => |p| if(p.size != .many and p.size != .slice) @compileError("Expected pointer of size 'many' or 'slice', found '" ++ @tagName(p.size) ++ "'"), else =>{}, } switch (bufferChildInfo) { .pointer => |p| if(p.size != .many and p.size != .slice) @compileError("Expected pointer of size 'many' or 'slice', found '" ++ @tagName(p.size) ++ "'"), else =>{}, } for (items, 0..) |item, i| buffer.*[i] = func(item); } pub fn curry(func: anytype) curryTypeGetter(@TypeOf(func), @TypeOf(func), .{}) { return curryHelper(func, .{}); } fn curryTypeGetter(comptime func: type, comptime newfunc: type, comptime args: anytype) type { const typeInfo = typeVerify(func, .{ .@"fn" = undefined }).@"fn"; const newTypeInfo = typeVerify(newfunc, .{ .@"fn" = undefined }).@"fn"; // Base case: if we've curried all but one parameter, return final function type if (typeInfo.params.len == args.len + 1) { return fn(typeInfo.params[args.len].type.?) typeInfo.return_type.?; } // Recursive case: return function that takes next param and returns curried function const nextParamType = typeInfo.params[args.len].type.?; var buf: [64]type = undefined; for (args, 0..) |a, i| { buf[i] = if (@TypeOf(a) != type) @TypeOf(a) else a; } buf[args.len] = nextParamType; return fn(nextParamType) curryTypeGetter(func, @Type(.{ .@"fn" = .{ .calling_convention = newTypeInfo.calling_convention, .is_generic = newTypeInfo.is_generic, .params = newTypeInfo.params[1..], .is_var_args = newTypeInfo.is_var_args, .return_type = newTypeInfo.return_type, } }), buf[0..args.len+1].*); } fn curryHelper(comptime func: anytype, args: anytype) curryTypeGetter(@TypeOf(func), @TypeOf(func), args) { const typeInfo = typeVerify(@TypeOf(func), .{ .@"fn" = undefined }).@"fn"; const argInfo = @typeInfo(@TypeOf(args)).@"struct"; _=argInfo; const nextParamType = typeInfo.params[args.len].type.?; const Closure = struct { fn funcCurry(arg: nextParamType) curryTypeGetter(@TypeOf(func), @TypeOf(func), args).ReturnType { // Base case: if we have all arguments, call the function if (args.len + 1 == typeInfo.params.len) { return @call(.auto, func, args ++ .{arg}); } // Recursive case: create new tuple with additional argument const newArgs = args ++ .{arg}; return curryHelper(func, newArgs); } }; return Closure.funcCurry; } fn intToStringZ(int: u32, buf: []u8) ![:0]u8 { return try std.fmt.bufPrintZ(buf, "{}", .{int}); } // TODO: Add tests