aboutsummaryrefslogtreecommitdiff
path: root/src/oldLib.zig
diff options
context:
space:
mode:
Diffstat (limited to 'src/oldLib.zig')
-rw-r--r--src/oldLib.zig227
1 files changed, 227 insertions, 0 deletions
diff --git a/src/oldLib.zig b/src/oldLib.zig
new file mode 100644
index 0000000..013daa7
--- /dev/null
+++ b/src/oldLib.zig
@@ -0,0 +1,227 @@
+const std = @import("std");
+const Type = std.builtin.Type;
+
+fn typeVerify(T: type, expected: anytype) Type {
+ const expectedType = @TypeOf(expected);
+ const expectedTypeInfo = @typeInfo(expectedType);
+ if (expectedTypeInfo != .@"struct")
+ @compileError("Expected struct or tuple, found " ++ @typeName(expectedType));
+ const realTypeInfo = @typeInfo(T);
+ for (expected) |e| {
+ if(realTypeInfo == e) return realTypeInfo;
+ }
+ for (expected) |e|
+ @compileError("Expected one of " ++ @tagName(e) ++ ", found " ++ @typeName(T));
+ return realTypeInfo;
+}
+
+/// ```zig
+/// (fn (fn (b) c, fn (a) b) fn (a) c)
+/// ```
+/// Function composition
+/// Type signature: (a -> b) -> (b -> c) -> (a -> c)
+/// `outerFunc` and `innerFunc` are functions of types `b -> c` and `a -> b` respectively
+/// Haskell equivalent: `outerFunc . innerFunc`
+pub fn compose(
+ comptime outerFunc: anytype,
+ comptime innerFunc: anytype
+) blk:{
+ _=typeVerify(@TypeOf(outerFunc), .{ .@"fn" });
+ _=typeVerify(@TypeOf(innerFunc), .{ .@"fn" });
+ const out = @typeInfo(@TypeOf(outerFunc)).@"fn".return_type.?;
+ const in = @typeInfo(@TypeOf(innerFunc)).@"fn".params[0].type.?;
+ break :blk fn(in) out;
+} {
+ const out = @typeInfo(@TypeOf(outerFunc)).@"fn".return_type.?;
+ const in = @typeInfo(@TypeOf(innerFunc)).@"fn".params[0].type.?;
+ return struct {
+ fn func(input: in) out {
+ return outerFunc(innerFunc(input));
+ }
+ }.func;
+}
+
+/// ```zig
+/// (fn (Allocator, fn (fn (a) b, []a) error{OutOfMemory}![]b)
+/// ```
+/// Map a function onto a list of values, allocating space for the new slice
+/// Type signature: `(a -> b) -> [a] -> [b]`
+/// `func` is of type `a -> b`, where `items` is of type `[a]`.
+/// `map` will return a slice of type `[b]`
+/// Haskell equivalent: `map func items`
+pub fn mapAlloc(
+ allocator: std.mem.Allocator,
+ func: anytype,
+ items: anytype,
+) error{OutOfMemory}!blk:{
+ const funcInfo = typeVerify(@TypeOf(func), .{ .@"fn" });
+ const itemsInfo = typeVerify(@TypeOf(items), .{ .array, .pointer });
+ switch (itemsInfo) {
+ .pointer => |p| if(p.size != .many and p.size != .slice)
+ @compileError("Expected pointer of size 'many' or 'slice', found " ++ @tagName(p)),
+ else =>{},
+ }
+
+ break :blk []funcInfo.@"fn".return_type.?;
+} {
+ const funcInfo = typeVerify(@TypeOf(func), .{ .@"fn" });
+ var result = try allocator.alloc(funcInfo.@"fn".return_type.?, items.len);
+ for(items, 0..) |item, i|
+ result[i] = func(item);
+ return result;
+}
+
+/// ```zig
+/// (fn (Allocator, fn (fn (a) b, []a, *[]b) void)
+/// ```
+/// Map a function onto a list of values, using a buffer
+/// Type signature: `(a -> b) -> [a] -> [b]`
+/// `func` is of type `a -> b`, where `items` is of type `[a]` and `buffer` is a pointer to a value of type `[b]`.
+/// Haskell equivalent: `map func items`
+pub fn map(
+ func: anytype,
+ items: anytype,
+ buffer: anytype,
+) void {
+ _=typeVerify(@TypeOf(func), .{ .@"fn" });
+ const itemsInfo = typeVerify(@TypeOf(items), .{ .pointer, .array });
+ const bufferInfo = typeVerify(@TypeOf(buffer), .{ .pointer });
+ const bufferChildInfo = typeVerify(bufferInfo.pointer.child, .{ .pointer, .array });
+ switch (itemsInfo) {
+ .pointer => |p| if(p.size != .many and p.size != .slice)
+ @compileError("Expected pointer of size 'many' or 'slice', found '" ++ @tagName(p.size) ++ "'"),
+ else =>{},
+ }
+ switch (bufferChildInfo) {
+ .pointer => |p| if(p.size != .many and p.size != .slice)
+ @compileError("Expected pointer of size 'many' or 'slice', found '" ++ @tagName(p.size) ++ "'"),
+ else =>{},
+ }
+ for (items, 0..) |item, i|
+ buffer.*[i] = func(item);
+}
+
+pub fn curry(func: anytype) blk: {
+ const typeInfo = typeVerify(@TypeOf(func), .{ .@"fn" }).@"fn";
+ if (typeInfo.params.len == 1)
+ break :blk @TypeOf(func);
+ if (typeInfo.params.len == 2)
+ break :blk fn(typeInfo.params[0].type.?)
+ fn(typeInfo.params[1].type.?) typeInfo.return_type.?;
+ if (typeInfo.params.len == 3)
+ break :blk fn(typeInfo.params[0].type.?)
+ fn(typeInfo.params[1].type.?)
+ fn(typeInfo.params[2].type.?) typeInfo.return_type.?;
+
+} {
+ const typeInfo = typeVerify(@TypeOf(func), .{ .@"fn" }).@"fn";
+ if (typeInfo.params.len == 1)
+ return func;
+ if (typeInfo.params.len == 2)
+ return struct {
+ fn funct(arg1: typeInfo.params[0].type.?) fn(typeInfo.params[1].type.?) typeInfo.return_type.? {
+ return struct {
+ fn func2(arg2: typeInfo.params[1].type.?) typeInfo.return_type.? {
+ return func(arg1, arg2);
+ }
+ }.func2;
+ }
+ }.funct;
+ if (typeInfo.params.len == 3)
+ return struct {
+ fn func1(arg1: typeInfo.params[0].type.?) fn(typeInfo.params[1].type.?) fn(typeInfo.params[2].type.?)
+ typeInfo.return_type.? {
+ return struct {
+ fn func2(arg2: typeInfo.params[1].type.?) fn(typeInfo.params[2].type.?) typeInfo.return_type.? {
+ return struct {
+ fn func3(arg3: typeInfo.params[2].type.?) typeInfo.return_type.? {
+ return func(arg1, arg2, arg3);
+ }
+ }.func3;
+ }
+ }.func2;
+ }
+ }.func1;
+}
+
+pub fn curryHelper(func: anytype, args: anytype) blk: {
+ const typeInfo = typeVerify(@TypeOf(func), .{ .@"fn" }).@"fn";
+ _=typeVerify(@TypeOf(args), .{ .@"struct" });
+ if (typeInfo.params.len == 1)
+ break :blk @TypeOf(func);
+ const newInfo = std.builtin.Type{
+ .@"fn" = .{
+ .calling_convention = typeInfo.calling_convention,
+ .is_generic = typeInfo.is_generic,
+ .params = typeInfo.params[1..],
+ .is_var_args = typeInfo.is_var_args,
+ .return_type = typeInfo.return_type,
+ }
+ };
+ _=newInfo;
+ // break :blk fn(typeInfo.params[args.len].type.?) @Type(newInfo);
+ break :blk type;
+} {
+ const typeInfo = typeVerify(@TypeOf(func), .{ .@"fn" }).@"fn";
+ const argInfo = typeVerify(@TypeOf(args), .{ .@"struct" }).@"struct";
+ if (args.len == typeInfo.params.len) return struct {
+ pub fn funcCurry() typeInfo.return_type.? {
+ return @call(.auto, func, args);
+ }
+ };
+ const newInfo = std.builtin.Type{
+ .@"fn" = .{
+ .calling_convention = typeInfo.calling_convention,
+ .is_generic = typeInfo.is_generic,
+ .params = typeInfo.params[1..],
+ .is_var_args = typeInfo.is_var_args,
+ .return_type = typeInfo.return_type,
+ }
+ };
+ _=newInfo;
+ // const newType = @Type(newInfo);
+ return struct {
+ pub fn funcCurry(arg: typeInfo.params[0].type.?) type {
+ var fields: [64]std.builtin.Type.StructField = .{std.builtin.Type.StructField{.name="10",.type=type,.is_comptime=false,.alignment=8,.default_value_ptr=null}} ** 64;
+ for (argInfo.fields, 0..) |f, i| {
+ fields[i] = f;
+ }
+ var buf2: [3:0]u8 = undefined;
+ fields[args.len] = .{
+ .name = blk: {
+ break :blk try intToStringZ(args.len, &buf2);
+ },
+ .type = typeInfo.params[argInfo.fields.len].type.?,
+ .is_comptime = false,
+ .alignment = @alignOf(typeInfo.params[0].type.?),
+ .default_value_ptr = null,
+ };
+ const newStruct = std.builtin.Type{
+ .@"struct" = .{
+ .backing_integer = argInfo.backing_integer,
+ .decls = argInfo.decls,
+ .fields = fields[0..args.len+1],
+ .is_tuple = argInfo.is_tuple,
+ .layout = argInfo.layout,
+ }
+ };
+
+ // std.debug.print("{any}", .{fields[0..3]});
+ const t = @Type(newStruct);
+ var newArgs: t = undefined;
+ for (@typeInfo(t).@"struct".fields, 0..) |f, i| {
+ if (i == args.len) {
+ @field(newArgs, f.name) = arg;
+ } else @field(newArgs, f.name) = args[i];
+
+ }
+ return curryHelper(func, newArgs);
+ }
+ };
+}
+
+fn intToStringZ(int: u32, buf: []u8) ![:0]u8 {
+ return try std.fmt.bufPrintZ(buf, "{}", .{int});
+}
+
+// TODO: Add